Thursday, August 6, 2015

Lintec Rad-2500 F8 SPL Wafer Mounter

Lintec Rad-2500 F8 SPL Wafer Mounter Chuck Table

8" inch ceramic chuck table 
12" inch ceramic chuck table


Monday, July 6, 2015

ACCRETECH/ TSK DICING MACHINE CHUCK TABLE

REPAIR OR REBUILD
ACCRETECH/TSK DICING MACHINE CHUCK TABLE

MACHINE MODLE

ACCRETECH / TSK 2500
ACCRETECH / TSK 88 A
ACCRETECH / TSK APM-5000
ACCRETECH / TSK APM-6000A
ACCRETECH / TSK APM-60B
ACCRETECH / TSK APM-90AL
ACCRETECH / TSK AWD-100A
ACCRETECH / TSK AWD-100A(M)
ACCRETECH / TSK AWD-10A
ACCRETECH / TSK AWD-110M
ACCRETECH / TSK AWD-200T
ACCRETECH / TSK AWD-208T
ACCRETECH / TSK AWD-300T
ACCRETECH / TSK AWD-4000A
ACCRETECH / TSK AWD-4000B
ACCRETECH / TSK AWD-5000
ACCRETECH / TSK AWD-5000A
ACCRETECH / TSK G-SL-534A-CX
ACCRETECH / TSK MSP 90A
ACCRETECH / TSK PSM-2000A
ACCRETECH / TSK UF 170
ACCRETECH / TSK UF 200 / 200A
ACCRETECH / TSK UF 200FL
ACCRETECH / TSK UF 200SFL
ACCRETECH / TSK UF 300/300A

www.chuck-table.com

Wednesday, June 17, 2015

End Effector---ceramic wafer arm

End effector (ceramic robot hand) constitute the end of the robot arm which handles and moves the semiconductor wafer between positions.  It’s basically the robot’s hand so it is important that it be thermally and dimensionally stable and not contaminate the chamber with particles or chemical contaminants.



















www.chuck-table.com

Friday, June 12, 2015

SemiXicon

前工序工艺设备:
  • 光刻机: 佳能PLA-501F, 600.
  • PE-340,500,600系列
  • 分步重复光刻机STEPPER
  • ASML-Stepper 分步光刻机
    Ultratech Stepper Model 1700
  • 涂胶显影导轨: SVG 8600,8800
  • 刻蚀机: Tegal 900/901/903.
  • 去胶机Branson 3000,3100
  • 各种扩散炉
  • 化学气相沉积APCVD(WJ-999),PECVD, LPCVD
  • 溅射台3180, 3190, 3290
  • 蒸发台MARK-50.
  • 离子注入机 NV10160,GDS-80
  • 硅片探针: EG1034,EG2001,3001
  • 硅片腐蚀清洗设备: FSI-Titan
  • 兆声波清洗Verteq Meg-sonic,
  • 湿洗台Wetbench, Wet Etch                 
  • 清洗甩干机
  • 工艺参数测量设备:
  •    4点探针 FPP-5000,
       C-V 图示仪(电容/电压曲线测量仪)
       少数载流子寿命测试仪
       尘埃颗粒测量仪KLA Tencor5500,6200,SP1
       膜厚测试仪 Nanospec 180/181/210
       台阶仪:Tencor AlphaStep 200/300/500
    • 集成电路测试系统 MTI-1030 用于测试运放/比较器,电源管理器件,脉宽调制器件,稳压电源器件,音频器件,各类数字模拟混合电路
    • 分离器件测试系统ST5000E,ST5300HS 1000-2000V,50A-1200A,用于测试大功率MOSFET, IGBT,二极管,三极管,整流桥
    • 各种备品备件
后工序设备
  • 划片机,粘片机,压焊台,塑封机,机械手
    可靠性实验设备,漏气检验,离心实验机等
硅片生产设备:
  • 切片机, 磨片机
    抛光机 Siltek 3800/3806,  Speedfam 16/18/50
    硅片厚度平整度测试分选设备 ADE 8100, 7200, 9300, 9500, 9520, 9530, 9600
    硅片减薄机: 迪斯科 DISCO
    斯特拉斯Strasbaugh 7AA,
    GMN 2R400
    激光打标机, 激光识别机
    硅片腐蚀清洗机, 倒角机
    硅片表面检查魔镜

Friday, May 29, 2015

Tuesday, May 19, 2015

ZERODUR

ZERODUR
ZERODUR® is a glass ceramic characterized by a phase of evenly distributed nano-crystals within a residual glass phase. It contains around 75 weight percent crystalline phase with a high quartz structure. The crystal structure has a negative linear thermal expansion, while the other glass phase has a positive linear thermal expansion. The material is adjusted in a way that the positive thermal expansion of the glass phase and the negative thermal expansion of crystal structure effectively neutralize each other. The crystals are typically only 50 nm in diameter, and ZERODUR appears reasonably transparent because the refractive indices of the two phases are almost identical. The most important properties of zerodur are: 
  • Nearly zero thermal expansion
  • Excellent homogeneity
  • High internal quality
  • Outstanding chemical stability
  • Polishable to a high accuracy
  • Good processing behavior
  • Low helium permeability
Figure 1&2 and table 1 give an overview of ZERODUR’s properties. 
Figure 1: External transmittance curve of ZERODUR at sample thickness of 5 mm and 25 mm.
Figure 2: Thermal expansion coefficient curve of ZERODUR as a function of temperature.
Optical Properties
Wavelength(um)656.27643.85587.56546.07486.13479.99435.83
Designated LetterCC'deFF'g
Refractive Index1.53941.53991.54241.54471.54911.54971.5544
AbbeNumber56.155.9
Mechanical Properties and Chemical Properties
Density(g/cm3)Poisson's RatioKnoopHardnessYoung's Moduluds (GPa)AcidResistance ClassAlkaliResistance ClassClimaticResistance ClassStainResistance Class
2.53
0.2462090.31110
Table 1:ZERODUR Properties
Low Expansion Materials :  
ZERODUR® is a registered trademark of Schott Glass Technologies. 

Wednesday, May 13, 2015

Wafer lapping ,polishing ,thinning ceramic plate

Wafer lapping ,polishing ,thinning ceramic plate
















Key Features 


· Material
   99.8% Alumina,high density,high hardness and good thermal conductitivity 

· Tolerance
   High flatness,parallelism ,roughness and micro constructure 
 
· Efficiency
   Contract manufacturing on associated variety of shapes,sizes and retain regular sizes in stock
 
· Cost   
    Total cost ownership commitment with swift responding,consistent cost reduction and overal design and development


Friday, May 8, 2015

Thin Film or Wafer Carriers

Thin Film or Wafer Carriers

Sapphire material is now widely used in optical and semiconductor industry, with hardness second only to diamond and chemical and scratch resistance and thermal stability ,it is superior to other materials such as quartz.

Sapphire carrier are used to hold and transport thin film processing of silicon,GaAs other semiconductor wafers and flexible substrates.

All thin substrate carriers are ultra flat and can be supplied with or without custom perforated holes,other option of porous ceramic is also our expertise.

Current sizes are available typically from 2" to 12" dia with flatness and parallelism of 0.002-0.005mm, large size till 20 inches is also  successfully prototyped.



Tuesday, April 28, 2015

静电吸盘的基本构造和原理

静电吸盘的基本构造和原理

射频专家 发表于: 2007-4-04 04:31 来源: 半导体技术天地
静电吸盘的构造和原理对很多人来说都还是很陌生的。不妨在这儿开个头,慢慢再以对答方式把它解释透。

1。种类:基本分为两类。即库仑类和迥斯热背(JR或Johnsen-Rahbek)类。
2。两类吸盘都靠静电荷的同性相吸来固定硅片。
3。吸盘与晶片接触的表面有一层电介质。以前的吸盘用的电介质多为有机材料或阳极氧化层,现在已普遍采用陶瓷。纯电介质做成的吸盘为库仑类,参杂电介质做成的吸盘为迥斯热背类。
4。在吸盘的电介质层中镶嵌着一个直流电极(大小与硅片相当,稍小),用以接通到高压(低流)直流电源。
5。在没有等离子体的情况下,当直流电极被接通到高压(低流)直流电源后,电介质的表面会产生极化电荷(对库仑吸盘而言)。如果是迥斯热背类吸盘,电介质表面不仅有极化电荷,还有很大部分自由电荷,这是因为JR吸盘的电介质有一定导电性。电介质的表面电荷会产生电场,这一电场会进一步在置于吸盘之上的晶片表面产生极化电荷 (也可能包括部分自由电荷,取决于什么样的晶片及晶片表面是什么膜,有导电性或绝缘),分布在晶片背面的电荷与分布在吸盘上面的电荷极性相反,这样晶片解就吸盘吸住了。
6。 在没有等离子体的情况下,如果关掉被接通到直流电极(镶嵌在吸盘的电介质中)的高压(低流)直流电源,假若分布在晶片背面的电荷与分布在吸盘上面的电荷都是极化电荷,则晶片就被释放了,即吸力自动消失。
7。 在没有等离子体的情况下,假若分布在晶片背面的电荷与分布在吸盘上面的电荷中有一部分是自由电荷,  即使关掉被接通到直流电极(镶嵌在吸盘的电介质中)的高压(低流)直流电源,则晶片也不会完全被释放,即因残留电荷而仍存在一定的静电吸力。这种情况下,通常需要用反向的静电压来强制消除残留电荷,然后才能释放晶片。
8。在有等离子体的情况下,由于直流自偏压(self DC bias)的缘故,即使关掉被接通到直流电极(镶嵌在吸盘的电介质中)的高压(低流)直流电源,即在吸盘电压为零的情况下,晶片仍然会被吸盘·吸住。这是因为直流自偏压起到了吸盘电压的作用。在某些反应腔中(不是蚀刻机的),甚至不需要用高压(低流)直流电源的静电压,完全靠直流自偏压就足够完成吸住晶片的任务。所以,在处理完晶片后,需要一个释放菜单(dechucking recipe)来释放晶片,否则无法从反应腔中把晶片取出。
9。一般来说,迥斯热背类吸盘的吸力比库仑类的大。在对晶片温度控制要求很高的蚀刻机中,越来越多地采用迥斯热背类吸盘,其电介质通常是参杂的氮化铝陶瓷材料。氮化铝有很好的导热性。
10。晶片处理过程中,之所以需要把晶片牢牢地吸到吸盘表面,主要是增加晶片与吸盘之间的传热。此外,晶片背面与吸盘表面之间的氦气是传热的重要媒介。
11。在吸盘中,除了直流电极外,还有射频电极。射频电极用来提供晶片处理过程中需要的射频偏置功率。此外,吸盘中也需要冷却液的循环渠道和氦气的气道。其设计还是需要特别小心细致的。而且,它的设计受到别的方面的制约,如体积不能过大,否则会堵塞或降低反应腔的排气速度。

Ceramic Properties

Material Properties for Alumina Ceramics

Properties / MethodUnitPEC94PEC96PEC995PEC998
CompositionWeight %96% Al2O399.5% Al2O399.8% Al2O3
Process--SinteredSinteredSintered
Color--WhiteWhiteWhiteIvory
Densityg/cm33.693.713.903.92
Flexural Strength / MORMPa364372388395
Fracture Toughness, K(IC) Notched BeamMPa m1/24455
Hardness / Knoop 1000gKg/mm21200120014501500
Young’s ModulusGPa305305380380
Poisson’s Ratio--0.210.210.220.22
Average Grain SizeMicrons,10654
Max Use TemperatureDegrees °C1725172517251725
Thermal Shock Resistance, D°C300300250250
Gas Permeabilityatm-cc/secNoneNoneNoneNone
Dielectric Constant1 MHz, 25 °C9.19.29.810.5
Thermal Expansion Coefficient (25-1000oC)/°C7.8 x 10-67.8 x 10-68.0 x 10-68.0 x 10-6
Thermal ConductivityW/m·°K, 20°C22.524.929.030.0
Material Properties for Zirconia, Silicon Nitride, & EDM-Machinable Ceramics
Properties / MethodUnitTZ-30DTZ-30MSSN-310PEC EDM
CompositionWeight %YTZP Zirconia High StrengthMg-PSZ ZirconiaSilicon NitrideEDM Machinable
Process--Sintered & HIPPED*Sintered/ ToughenedSinter- Reaction BondedHot Pressed
Color--Varies (Gray-Green)IvoryBlackBlack
Densityg/cm36.055.833.203.90
Flexural Strength/ Four Point BendingMPa1400650800690>
Compressive Strength/ASTM-C773MPa, 25 °C25001750----
Fracture Toughness, K(IC)/SENB Notched BeamMPa m1/28105.8
Young’s Modulus/ Pulse-Echo MethodGPa220200310406
Average Grain SizeMicrons, m< 120--< 3
Max Use Temperature

Recommended Use Temp
Degrees °C

Degrees °C
1500

< 280
1500

< 1150
1600

up to 1600
1600

up to 1600
Thermal Shock Resistance,DT°C400400500--
Hardness / Knoop1000 gKg/mm21300120018002400
Dielectric Constant1 MHz, 25 °C28279--
Electrical ResistivityOhm-cm1013101310149 x 10-3
Thermal Expansion Coefficient
(25-1000 oC)
/°C10.3 x 10-610.1 x 10-63.1 x 10-67.0 x 10-6
Thermal ConductivityW/m·°K, 25°C2.22.22663

Sunday, April 26, 2015

Porous Ceramic

The generic word ‘filtration’ can encompass many applications across a wide range of industries, the majority of which can be served by the commonly available filter media where process temperatures are low and / or the environment inert.
It therefore takes a very special medium to tackle the difficult and unusual conditions found in today's chemical, petrochemical or general process industries.
These difficult problems were solved by  porous ceramic media that are chemically inert, stable and available in a variety of controlled and special grades, with temperature capabilities of up to 900ºC.

Available Ceramic Filter Media

We have a range of standard ceramic materials. Each has its unique characteristics and capabilities. The materials used most commonly are Pyrolith and Coralith.



Typical Filtration Tube Sizes
Various size,shape,pore size,porosity are available.

Flow Rates v Pressure Drop

Flow rate v pressure drop information can contact our sales rep.

Applications

Applications for filtration tubes fall into two main groups, each explained further on their own page:
  • Gas and Air Filtration
  • Liquid Filtration

Common Benefits

  • Controlled pore size
  • Controlled porosity and permeability
  • Coalescing capability
  • Chemically inert - can handle acidic gases
  • High Temperature capability to 900ºC
  • Range of standard element sizes
  • Low cost of ownership

Filter Cleaning

The cleaning properties of an element are dependent on the contaminate and the conditions. Normal methods of cleaning are surface brushing, back flushing or cleaning with a suitable solvent solution. With depth filter media, cleaning only usually removes surface contaminate with particles trapped in the pores being difficult to remove. Once the pressure drop across the filter reaches an unacceptable level, and cleaning has failed to restore the flow, then the filters should be replaced.

Saturday, April 25, 2015

Porous Ceramics